A New Upper Bound for the Irregularity Strength of Graphs

نویسندگان

  • Maciej Kalkowski
  • Michal Karonski
  • Florian Pfender
چکیده

A weighting of the edges of a graph is called irregular if the weighted degrees of the vertices are all different. In this note we show that such a weighting is possible from the weight set {1, 2, . . . , 6dnδ e} for all graphs not containing a component with exactly 2 vertices or two isolated vertices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Total Edge Irregularity Strength of Staircase Graphs and Related Graphs

Let G=(V(G),E(G)) be a connected simple undirected graph with non empty vertex set V(G) and edge set E(G). For a positive integer k, by an edge irregular total k-labeling we mean a function f : V(G)UE(G) --> {1,2,...,k} such that for each two edges ab and cd, it follows that f(a)+f(ab)+f(b) is different from f(c)+f(cd)+f(d), i.e. every two edges have distinct weights. The minimum k for which G ...

متن کامل

Total vertex irregularity strength of corona product of some graphs

A vertex irregular total k-labeling of a graph G with vertex set V and edge set E is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by tvs(G)is the minimum value of the largest label k over all such irregular assignment. In this paper, we study the to...

متن کامل

New results on upper domatic number of graphs

For a graph $G = (V, E)$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_k}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i$ dominates $V_j$ or $V_j$ dominates $V_i$ or both for every $V_i, V_j in pi$, whenever $i neq j$. The textit{upper domatic number} $D(G)$ is the maximum order of an upper domatic partition. We study the properties of upper domatic number and propose an up...

متن کامل

A new upper bound for the total vertex irregularity strength of graphs

We investigate the following modification of the well known irregularity strength of graphs. Given a total weighting w of a graph G = (V,E) with elements of a set {1, 2, . . . , s}, denote wtG(v) = ∑ e3v w(e)+w(v) for each v ∈ V . The smallest s for which exists such a weighting with wtG(u) 6= wtG(v) whenever u and v are distinct vertices of G is called the total vertex irregularity strength of...

متن کامل

Sharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs

In $1994,$ degree distance  of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of  multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the  multiplicative version of degree distance and multiplicative ver...

متن کامل

240 on Graphs of Irregularity Strength 2

We consider undirected graphs without loops or multiple edges. A weighting of a graph G is an assignment of a positive integer w( e) to each edge of G. For a vertex x€V(G), the (weighted) degree d(x) is the sum ofweights on the edges ofG incident to x. The irregularity strength s( G) of a graph G was introduced by Chartrand et al. in [1] a.s the minimum integer t such that G has a weighting wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2011